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Restricted valence site animals on the simple cubic lattice 
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Abstract. Exact values of the numbers of connected clusters of n sites, each site having 
valence no larger than v, are presented for the simple cubic lattice for v = 2,3,4,5 and 6 for 
small values of n. Assuming a plausible asymptotic form for the dependence of these 
numbers on n and v we show rigorously that the exponent T characterising the dominant 
singularity in the generating function is negative for v = 2 but positive for v 5 3.  Series 
analysis techniques suggest that the same value of 7 obtains for all v 5 3. 

A lattice (site) animal is a cluster of sites of the lattice (of coordination number Q) such 
that adjacent sites are joined by a bond and every site in the cluster can be reached from 
every other site in the cluster by a path along these bonds, i.e. a site animal is a 
connected section graph of the lattice. Lattice animals are of interest in the theory of 
percolation processes (Sykes and Glen 1976). It has been shown rigorously (Klarner 
1967) that if the number of site animals with n sites, per lattice site, is a, then 

and a plausible assumption would seem to be 

a,-Cn-'A" ( n  +CO). (2) 
Making use of exact enumerations of lattice animals for small n, series analysis 
techniques have yielded estimates of A, the exponent T and the amplitude C (Sykes and 
Glen 1976, Sykes eta1 1976, Guttmann and Gaunt 1978). It is found that both A and C 
are lattice-dependent whereas the exponent T is a dimensional invariant. These 
conclusions are consistent with the universality hypothesis. 

More recently, attention has been focused (Gaunt et a1 1979, Whittington et a1 
1979) on a generalisation of this problem in which the valence of each site in a cluster is 
not allowed to exceed some pre-assigned number Y, i.e. the number of bonds meeting at 
a site cannot exceed Y 6 Q. If the number of animals on the square lattice with n sites 
having no vertex of degree greater than v is a,(v), Gaunt et a1 (1979) showed rigorously 
that a,(v)"" approaches a limit A(v), say, for all v and, assuming that 

u,(Y)  - C(v)n-"")A(v)" ( n  -+CO) (3) 

they showed that ~ ( 2 )  < 0 but ~ ( v )  > 0 for v 2 3. In addition, they presented numerical 
evidence that ~ ( 3 )  = ~ ( 4 )  = 1. Subsequently, this work was extended to the triangular 
and honeycomb lattices by Whittington et a1 (1979). They concluded that for site 
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cluste~-s on the triangular, square and honeycomb lattices the exponent 7 changes 
between v = 2 and v = 3 from 7 ( 2 )  = -$ to  ~ ( 3 )  = 1, and is then independent of v for all 
larger values of $1. 

The above results are interesting in that they extend the universality class of site 
animals on two-dimensional lattices to include the cases 3 6 v 6 Q, and show that v = 2 
animals belong to a different universality class. Of course, it is also of interest to 
consider the corresponding problem on three-dimensional lattices. Consequently, we 
shall consider here the simple cubic lattice site animals with v = 2, 3 ,4 ,  5 and 6. Some 
exact enumeration data are presented in table 1. The values for Y = 6 up to n = 13 are 
reproduced from Gaunt et a1 (1976). For v = 3 ,4  and 5 we have obtained the numbers 
of clusters with up to 12, 11 and 11 vertices, respectively. For v = 2, the number OC 
clusters with n vertices is the sum of the number of strongly embedded simple chains 
with n - 1 edges, [ n  - 1lC, and the number of strongly embedded polygons with n edges, 
[nlo, 

a,,(2) = [ n  .- l I c+  [njo. (4) 

Table 1. Numbers of clusters a,(v) with maximum valence Y and simple chains [ a  - 1]=, 
having n sites ana strongly ernbeddable i n  the simple cubic lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
15 
17 

1 
3 

15 
63 

267 
1107 
4623 

19071 
78987 

324343 
1337511 
5 4 8 3 2 3 5 

22527315 
92200455 

377965479 
1544925891 
6322891767 

1 
3 

15 
66 

267 
1111 
4623 

19098 
78987 

324789 
1337511 
5485642 

225273 15 

1 
3 

15 
86 

519 
3247 

20807 
136393 
911439 

6189701 
42596055 

294398781 

1 
3 

15 
86 

534 
3475 

23399 
161641 

1139421 
8163899 

59284095 

1 
3 

86 
534 

3481 
23501 

162895 
1152639 
8292218 

60469374 

i s  

1 
3 

15 
86 

534 
3481 

23502 
162913 

1152870 
8294738 

60494549 
446205905 

3322769129 

We have enumerated a,,(2) up to n = 13 and [ n  - l I c  up to n = 17. Values of [ n  - 1Ic 
were previously available only through n = 14 (Fisher and Hiley 1961, Hioe 1967). As 
pointed out by Gaunt et a1 (1979), the dominant asymptotic behaviour of a,(2) will be 
the same as [n  - lIc, the number of ( n  - 1) step undirected neighbour-avoiding walks 
(NAWS). 

Before presenting the analysis of these data, we shall extend the arguments of Gaunt 
et a1 (1979) for the square lattice to show that ~ ( 3 )  > 0 for the simple cubic lattice. 

The basic argument in that paper rested on joining two animals together to form a 
larger animal, without violating the restricted valence criterion. Gaunt et al (1979) 
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showed that, for the d-dimensional hypercubic lattice, 

an(v)am(v) .S a n i - m ( v )  ( 5 )  

for all n and m, when u > d +  1. That is, for the square lattice u , ( Y )  is a super- 
multiplicative function of n for v b 3 and, assuming the functional form (3), it follows 
that ~ ( v )  b 0 for v L 3. For the simple cubic lattice, this argument only shows that a,(v) 
is supermultiplicative for v L 4 and hence that ~ ( v )  3 0 for v b 4. The argument used by 
Gaunt et al to show that ~ ( 2 )  < 0 for the square lattice will also work for the cubic lattice, 
so that the only remaining case is Y = 3. For this value of v the 'joining construction' 
used by Gaunt et a1 would not necessarily yield animals with no vertices with degree 
greater than three and we must seek an alternative proof. 

We first need a definition and a lemma. 

Definition. For a site animal (A) on the cubic lattice, with all vertices of degree less than 
or equal to three, the top set of vertices T(A) consists of the set of vertices with largest z 
coordinate. 

Lemma. T(A) cannot consist entirely of articulation points of degree three. 
The proof of this lemma is rather complicated and we shall defer it until the 

remainder of the proof has been outlined. In the same way that we can define a top set 
of veitices of an animal, we can define a bottom set B(A), all of which have smallest z 
coordinate. Clearly the lemma will also apply to the bottom set B, and we shall 
construct an animal by joining a vertex in T(A) to a vertex in B(A') where A and A' are 
animals with, respectively, n and m vertices. If T(A) and B(A)  both contain a vertex of 
degree two or less they can be joined as follows. Suppose that these vertices are cr and 
U', then translate A' so that the x and y coordinates of u' are the same as those of u and 
the z coordinate of U' is to  + 2, where zo is the z coordinate of U. By adding a vertex a", 
between U and cr' (with z coordinate zo + 1) and adding two edges (a; a'') and (cr', cr") 
the resulting animal is a section graph of the lattice, has (n + m + 1) vertices and all 
vertices have degree less than or equal to three. (Notice that it is necessary to insert this 
additional vertex, cr", since otherwise a degree-three vertex in A or A' might become 
adjacent to a vertex in the other animal, thus becoming a degree-four vertex.) If T(A) 
does not contain a vertex of degree two or less (e.g. A might consist of the vertices of a 
c'ube) then, by the above lemma, at least one vertex in T(A) must not be an articulation 
point. On removing this vertex (and its incident edges) a neighbouring vertex in T(A) 
must be reduced to degree two. The same procedure can be used for B(A') or for T(A) 
and B(A') together, and the above construction can be used. This leads to the following 
inequality: 

an(3)am(3) 9 an+m+1(3) + an+m(3) f an+m-1(3) 3a,-em+1(3). (6 )  

bn(3)bm(3) .S bn+m+1(3) (7) 

Defining b,(3) = a, (3) /3  gives 

and, since a,(3) 6 u f l ( 6 )  and limn +m ~ ~ ( 6 ) " "  exists and is finite, we know that b,(3)l/" is 
bounded above. Hence (Wilker and Whittington 1979) 1imflem b,(3)'/" exists and is 
finite and so limn+m ~ ~ ( 3 ) " "  exists and is finite. If the value of this limit is A(3) then it 
also follows (Wilker and Whittington 1979) that 

a,(3) 9 3h (3)"+' (8) 
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and, combining this result with the plausible asymptotic form (3) ,  we obtain 

,r(3) 3 0. (9) 

Proof of lemma. Suppose the contrary to be true. Consider an arbitrary animal, A, 
having no vertex of degree greater than three. Choose an arbitrary vertex a E T(A). By 
hypothesis a is an articulation point of degree three and is therefore either connected to 
three vertices d, af ' ,  u"'ET(A), in which case we say that a is of type 1, or to two 
vertices a ' ,  a" E T(A) and to a third vertex u"' which is not a member of T(A), in which 
case we say that a is of type 2. 

On deleting a and its incident edges, A decomposes into two or three sub-animals 
which we label A', A" and possibly A'". If a was a type-1 vertex, choose A' such that 
T(A') contains only one of a ' ,  a" ,  a"'(a', say). If a was a type-2 vertex, choose A' such 
that it contains either both of a' and a" or only one of these (a ' ,  say) and not a"'. 

Now replace a and all edges incident on a and on a vertex in A', and call this new 
animal B. All vertices in T(A') will be of degree three and will be articulation points of B 
and, in particular, this will be true of u'. On removing a' and all edges incident on a', B 
will decompose into two or more sub-animals B', B", and perhaps B"'. 

We now wish to show that one of these (B', say) has the following properties: 
(i) a& B', 

(ii) T(B') contains a vertex u* E T(B) which is a neighbouring lattice point to a'. 
From the geometry of the cubic lattice u' must have at least two neighbours which are 
members of T(B) and one of these will be a. If a was of type 1 in A or if it was of type 2 
in A but A' did not contain both a' and a" then a is connected to other vertices in B only 
through u'. Hence, when u' is deleted from R,  a must form a separate sub-animal and 
there must be another sub-animal, B', not containing a but containing a vertex 
a *  E T(B') which was directly connected to a' in B. The remaining possibility is that u 
was of type 2 in A but A' contained both a' and a". Then a' must be type 1 (otherwise 
u"'wou1d also be in B) so u' must have three neighbouring vertices in T(B). Hence there 
must be a sub-animal (B') of B which does not contain u but which contains a vertex 
a *  E T(B') which is a neighbour of a' on the lattice. 

We now form an animal C from B' by replacing u' and all edges incident on u' and on 
a vertex in B'. This procedure can be continued, forming a sequence of animals 
A 2 B 3 C 3.  . . X 3 . . . . Since X is a proper sub-graph of the preceding members of 
the sequence, eventually we must obtain an animal (X, say) with only two vertices in 
T(X). Both of these will be, at most, of degree two but the above argument shows that 
one must be of degree three (and an articulation point). Therefore we have a 
contradiction and the lemma is proved. 

Remark. The triangular lattice has a similar difficulty in that the Gaunt et a1 (1979) 
proof works only for v 2 4. However, for Y = 3, it is possible to construct a very simple 
argument as follows. If the botfom vertex, u (see Gaunt et a1 (1979) for definitions), of 
an animal is of degree three then two of its neighbouring vertices in the animal (a' and 
u") must be connected through the third neighbour (U"')  so that a'" is directly connected 
to each of a, af and a". Hence, since Y = 3, u"' cannot be directly connected to any other 
vertices and cannot be an articulation point. u'" can then be deleted so that a becomes 
of degree two, and can be directly connected to the top vertex of a second animal. This 
leads to the inequality 
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from which the existence of the limit 

lim n-l In an(3) = In A ( 3 ) < c O  (11) 
n - m  

follows, as does the property that ~ ( 3 )  > 0. 
We now return to the analysis of the data in table 1 and have used standard methods 

of series analysis (Gaunt and Guttmann 1974) to estimate A ( v ) ,  T ( V )  and C ( v ) .  Our 
best estimates are given in table 2. 

Table 2. Estimates of critical parameters for the simple cubic lattice. 

2 4,046 i 0.003 - * 0.015 0,19* 0.02 
3 7.85 *0.03 1,50*0.05 0,26* 0.05 

0.18zt0.05 4 8.32 *0.01 130*0.05 
5 8.33 i 0 . 0 3  1,50* 0.05 0.19 * 0.05 
6 8.33 k0.025 1.50zt0.05 0 .19 i0 .04  

The values of A ( v )  are ‘biased’ in the sense that the central values quoted for T ( Y )  

have been used in their estimation. The sensitivity of A (v) to small changes in 7 is given 
roughly by 0.25 AT for U = 2 and 0.4A.r for 3 C v s 6, where AT represents the change in 
T.  ‘The estimates of A ( v )  for v = 2 and v = 6 are in good agreement with previous work 
(Hioe 1967, Sykes et a1 1976, Gutfmann and Gaunt 1978). A ( v )  appears to be a 
monotonic increasing function of v (note that it is easy to prove that A (Y) is monotone 
non-decreasing), 

For v = 2, there are good theoretical reasons (Watson 1970) for believing that the 
exponent for NAWS (and hence a, (2)) will be the same as for self-avoiding walks (SAWS), 
and hence we expect T ( 2 )  -- --i (McKenzie 1976). Our estimate supports such a value, 
as did the work of Hioe (1967). For v = 6 our estimate of ~ ( 6 )  = 1iis in good agreement 
with earlier work (Sykes et a1 1976, Guttmann and Gaunt 1978). Furthermore our 
results suggest that T ( V )  = 1; for all v such that 3 s v G 6. Perhaps our most persuasive 
evidence for the invariance of T ( V )  with v for v 3 3 is shown in figure 1. Here, successive 
estimates, T,(v) ,  of T ( V )  given by T,(v)  = n [ l  - (A,/A ;)I, where A ;  = nA, - ( n  - 1 ) A n - l  
and A, = an(v ) /a , - l ( v ) ,  are plotted against n for v = 3 ,4 ,5  and 6. These plots suggest 
quite strongly the existence of a common limit, even though its precise value is rather 
uncertain. For estimating the limit we confined our attention to the v = 6 series since (a) 
it is longest, and (b) suffers very little from interference from sub-dominant singularities 
(see below). 

The amplitudes C ( v )  proved rather difficult to estimate precisely. C(6) is in good 
agreement with the estimate C(6) = 0.19 f 0.02 of Guttmann and Gaunt (1978), whose 
smaller uncertainty does not reflect the uncertainties in A and T as do our estimates. It 
should be noted that the amplitude C ( v )  defined through (3) is not quite the same as the 
amplitude A ( v )  defined previously (Gaunt etal 1979, Whittington etal 1979), although 
they are simply related. We now feel that the present definition is more ‘basic’, 
particularly when the animal generating function 

G(x, v )  = 1 + 1 a,(v)x” 
n 2 l  
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J 1 LO 

Figure 1. Successive estimates, T , , ( Y ) ,  of P(V) plotted against n for Y = 3,4,5 and 6 for the 
simple cubic lattice. On this scale, the plot for Y = 5 ( n  s 11)  coincides with the plot for 
v = 6 .  

has a cusp-like singularity at x = 1 / A  ( U )  as it will for T >  1. (Notice that C ( v )  = A ( Y )  
when T(Y) = 1, as it does in two dimensions for 3 s v s Q.) 

Using Pad6 approximant techniques we have examined each of the generating 
functions to try to identify the sub-dominant singularities. For Y = 3 there is a 
sub-dominant singularity on the negative real axis at about x = - 2/A (3), but is further 
out than - 3 / A  ( v )  for all v > 3. For v = 2 and for NAWS it appears to be at x = - 1 / A  (2), 
and a similar result is known for the SAW generating function (Hioe 1967, Watts 1975). 
Such symmetrically placed singularities in all three generating functions were also 
found (Gaunt et a1 1979, Whittington et a1 1979) for loose-packed lattices in two 
dimensions. 

In summary, we have shown rigorously that for site clusters on the simple cubic 
lattice 7 must change on going from v = 2 to Y = 3. Numerical evidence suggests that 
7(2) = - d  and ~ ( v )  = 13.for all v 2 3. By the universality hypothesis the same result 
should be true for all three-dimensional lattices. The only results available for other 
three-dimensional lattices are 7(2) = - %  (Hioe 1967) and ~ ( 6 )  -‘I 1$ (Sykes et a1 1976, 
Guttmann and Gaunt 1978) for the diamond, body-centred cubic and face-centred 
cubic lattices. Nevertheless, there can be little doubt about the truth of the conjecture 
in view of the present work and the knowledge that an analogous result appears to hold 
for all two-dimensional lattices (Gaunt et a1 1979, Whittington et a1 1979). 
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